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Converting to different bases
Is that even number theory?

When converting form base i to base j, we can use 
base 10 as in intermediary step.

The reason for this is it is conceptually easier to go 
to base 10.  



  

Base i to base 10
Example:

Firstly we are going to use the following format for number in a certain base

A number in base 13 would look like this:

[1 , 2, 12, 10]

The first digit is the units digit. Coding it like this makes it easier to iterate over.

The above example in base 10 is the following:

1*130 + 2*131 + 12*132 + 10*133  = 24025 (base 10)

Notice that:

[X
0
, X

1 
, X

2
,...]  (base i)

= X
0
* i0 + X

1
 * i1 + X

2
 *i2 + ...   (base 10)

With this knowledge we can write the following code:



Code for base i to base 10



  

Base 10 to base j
First we find the highest power of j that divides the number we 
want to convert.

If n is the number then the highest power is:

floor(Log
j
 n)

We then run through each power of j from floor(Log
j
 n) to 0.

In each iteration we do the following: 

Find the multiple of j to some power that fits into n. We then write 
down the multiple and subtract the product from n.



  

Code for base 10 to base j



  

Finding Prime numbers

Prime numbers are numbers with only 2 factors: 1 and itself

There are two main methods:

Trial division

Or

Sieve of Eratosthenes



  

Trial Division

It is the simplest method.

Check all numbers below the prime (excluding 1) and check if any number divides it.

If a number divides it, it is not prime.

Otherwise it is prime.

Things to Note: 

You only need to check primes below it.

You only need to check up to the square root of the number

This method is often too slow as it takes roughly O(n0.5) 
or 
O( (n/ln (n))0.5 )  if you are only checking primes below it. For each iteration.

Meaning if you calculate all primes below n with this method it will take
O(n3/2) 

ish
 time.



  

Sieve of Eratosthenes
This finds primes up to a given n
Time complexity : O(n log log n)

Step 1: generate a list of numbers up to n, excluding 1. Mark 
everything in the list as a prime.

Step 2: process the first element.

Step 3: if the number you iterate over is prime add it to your prime list.
And do the following. If it is not prime skip to the last step.

Step 4: mark all multiples of that prime as non-prime.

Step 5: process the next element 

This will give you all the primes under n.

You can make this code much more efficient:

Efficiency 1: generate in your starting list only odd numbers 
your prime list should thus start with 2 in it in the beginning.

Efficiency 2: when marking off numbers as non prime, start 
at the square of the prime. e.g. if you are processing 11, 
start at 11*11 = 121 and mark off from there.



  

Sieve of EraWhatSitFace code

Note: vector<int> primes is global.
Since I’m using bools instead of int. I convert the index to numbers with the function “con”
And numbers to index with “noc”.
Since primes is global you also don’t have to return anything of use in the function.



  

GCD and LCM

GCD = greatest common divisor

LCM = lowest common multiple

W.L.O.G a >= b
If c is the GCD(a ,b). then c divides a and c divides b.
c also divides a – b. From this we see that 
c divides a % b.

Thus GCD(a ,b)  = GCD (a%b,b) and GCD(a,0) = a

We can use this to calculate the GCD of any two 
numbers

We can find the LCM with the GCD-LCM link which 
states:

LCM(a,b) = (a*b)/GCD(a,b)

a%b = c
Means a divided by b leaves 
remainder c



  

Code for GCD and LCM



  

Modular inverses

What is a modular Inverse?

If you have an a and b such that GCD(a,b) = 1

Then k is the modular inverse of a MOD b iff

(a*k) %b == 1

e.g. the modular inverse of 7 MOD 31 is 9.

7*9 = 63
63 % 31 = 1



  

How to calculate modular inverses?

We first need to learn Euclid’s division algorithm and the extended 
algorithm

Euclid’s Division algorithm is what we used to calculate the GCD of two numbers, 
except written out properly.
It’s best to show by example.

EXAMPLE 1:
a = 78 , b = 30

78 = 2(30) + 18

30 = 1(18) + 12

18 = 1(12) + 6

12 = 2(6) + 0

Therefore GCD(78,30) = 6

EXAMPLE 2:
a = 125 , b = 36

125 = 3(36) + 17

36 = 2(17) + 2

17 = 8(2) + 1
 
2 = 2(1) + 0

Therefore GCD(125,36) = 1 



  

Extended Euclid’s Division algorithm
It’s the same thing but backwards.

a = 125 , b = 36

125 = 3(36) + 17

36 = 2(17) + 2

17 = 8(2) + 1
 

Normal Extended

1 = [1](17) + [-8](2)
1 = [1](17) + [-8](36 – 2*17)
1 =  [-8](36) + [17](17)
1 = [-8](36) +[17](125 – 3(36))
1 =  [17](125) + [-59](36)

Thus the modular inverse of 125 MOD 36 is 17 



  

BUT THERE’S A BETTER WAY 
THAT ISN’T CONFUSING AS HELL 

AND PRONE TO ERRORS!!!!

a = 125 , b = 36

125 = 3(36) + 17   p[3] = 3

36 = 2(17) + 2       p[1] = 2

17 = 8(2) + 1         p[0] = 8

Do the division algorithm but only record 
the coefficients (the thing not in brackets)

Then do the following recursion

x = 0, y = 1

(x, y) 
(y, x – y*p[i] )

e.g

(0, 1)
(1, 0 -1*8)
(1, -8)
(-8, 1 -(-8)*2)
(-8, 17)
(17, -8 -(17)*3)
(17, -59)

Which means 1 = 17(125)-59(36) 



  

Code for using the previous method



  

Bezout coefficients



  

Efficient exponentiation
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